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Abstract—Electric Vehicle (EV) optimization involves stringent con-
straints on driving range and battery lifetime. Sophisticated embedded
systems and huge number of computing resources have enabled re-
searchers to implement advanced Battery Management Systems (BMS)
for optimizing the driving range and battery lifetime. However, the
Heating, Ventilation, and Air Conditioning (HVAC) control and BMS have
not been considered together in this optimization. This paper presents a
novel automotive climate control methodology that manages the HVAC
power consumption to improve the battery lifetime and driving range.
Our experiments demonstrate that the HVAC consumption is considerable
and flexible in an EV which significantly influences the driving range and
battery lifetime. Hence, this influence on the above-mentioned constraints
has been modeled and analyzed precisely, then it has been considered
thoroughly in the EV optimization process. Our methodology provides
significant improvement in battery lifetime (on average 14%) and average
power consumption (on average 39% reduction) compared to the state-
of-the-art methodologies.

I. INTRODUCTION AND RELATED WORK

Electric Vehicles (EVs) have been accepted as sustainable solution
and a new paradigm of transportation [1] to address the environmental
issues caused by greenhouse gases and other pollutants coming from
road transportation [2]. Despite the incentives provided by govern-
ments to promote EV deployment [3], EVs pose new challenges
in the trade-off between costs and performance [4]. The driving
range and battery lifetime are the challenges that have become major
design objectives for EVs. The cost, volume, and weight constraints
in battery pack design make them the major bottleneck restricting
the amount of energy stored for driving [5]. On the other hand, the
battery lifetime is directly related to the State-of-Health (SoH) which
represents the battery capability to store and deliver energy. The SoH
degrades over time according to the battery usage pattern and the
battery will become useless when it degrades for about 20% [6].
In order to alleviate the driving range and battery lifetime issue,
a Battery Management System (BMS) is typically implemented to
monitor and control the battery cells [1]. The BMS prevents over-
charging, overdischarging, overheating, and imbalance of battery cells
to improve their energy efficiency and lifetime. By presenting Hybrid
Energy Storage System (HESS) [3] that may consist of ultracapacitors
accompanied with battery cells, the BMS evolved to handle the
charge management for heterogeneous energy storage to improve
energy efficiency and battery lifetime. Other components inside EV,
e.g. power converters, inverters, electrical motor, etc. demonstrate
different efficiency in various conditions. Hence, the BMS may
optimize the battery or HESS usage based on the components’
efficiency map. Also, [3][7] have illustrated that the BMS may predict
and optimize the energy consumption more efficiently by having the
route information.
In the process of optimizing the energy efficiency and battery lifetime
by the BMS, the electrical motor power consumption has been
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considered in a fine-grained level. While, up until now, the power con-
sumption of the Heating, Ventilation, and Air Conditioning (HVAC)
has been assumed to be constant. On the other hand, controlling the
HVAC (automotive climate control) is mostly done using switching
On/Off the system or fuzzy-based methodologies implemented on
Proportional-Integral-Derivative (PID) controllers [8][9][10]. These
methodologies typically try to stabilize the temperature and humidity
inside the cabin within the comfort zone [11] without considering the
battery lifetime. Therefore, the HVAC and the BMS have not been
considered together in the optimization process. Recently, research
has been done to analyze the HVAC power consumption influence
on the driving range [12]. The HVAC in an EV may consume upto
6KW and reduce the driving range upto 50% depending on the outside
weather conditions [13]. Hence, the HVAC power consumption is a
significant factor affecting the driving range and battery lifetime, and
may be controlled more easily as opposed to the electrical motor.
In summary, the above-mentioned state-of-the-art methodologies suf-
fer from the following three major limitations:

1) The HVAC control has not been considered together with the

BMS for optimizing the driving range and/or battery lifetime.
2) They have all considered HVAC power consumption as a constant
for modeling and estimation.

3) The effect of the HVAC power consumption on the battery
lifetime has not been accounted.
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A. Motivational Case Study on HVAC Load Analysis

According to existing data, we have analyzed the power con-
sumption in an EV (Tesla Motor S 60KWh [14]) and an Internal
Combustion Engine (ICE) vehicle (Toyota Corolla [15]) when the
HVAC is powered on, for different ambient temperatures (Fig. 1).
Although the electrical motor efficiency in EVs and engine efficiency
in ICE vehicles change for different ambient temperatures, their
consumption is almost similar for different temperatures. Also, the
accessories (e.g. entertainment system) in EVs and ICE vehicles
consume the same small amount for different ambient temperatures.
However, the HVAC consumption demonstrates different behavior for
EVs and ICE vehicles. In lower temperatures, the HVAC in ICE
vehicles uses the heat generated from the engine to warm up the
cabin, resulting in almost no fuel consumption except for the fan.
While, in higher temperatures, the HVAC has to consume power/fuel
to cool down the air. On the other hand, in EVs, since almost no heat
is generated from the electrical motor, the HVAC has to consume
power in both cases to warm up or cool down the cabin. Moreover
the percentage, the HVAC contributes to the total power consumption
in EVs (upto 20%), is more significant than in ICE vehicles (upto 9%).



Therefore, this may affect the battery lifetime and EV driving range
significantly, and due to the longer recharging time and relatively less
number of charging stations, it may further worsen the situation for
the driver and causes range anxiety [7].

Summary and conclusion from observations: the above analysis
illustrates that HVAC power consumption is a significant factor in EVs
and varies based on the ambient temperature. Hence, not considering
the HVAC and BMS while optimizing the battery lifetime and driving
range, may not give the optimal solution. Having a detailed HVAC
model which describes its behavior and characteristics in various
states and with respect to different inputs, may help us to estimate
the HVAC power consumption in the EV and analyze its effect on
the battery lifetime [16]. In this way, we may control the HVAC and
its power consumption in an optimum way to improve the driving
range and reduce the SoH degradation. Hence, our novel automotive
climate control methodology optimizes the driving range and battery
lifetime using the co-ordination between the HVAC and BMS.

B. Problem and Research Challenges
The problem of improving the battery lifetime and driving range
poses the following key challenges:

1) Having an accurate modeling and estimation for HVAC’s dynam-
ics, power consumption, and influence on the battery lifetime.

2) Co-ordination between the HVAC and the BMS for optimizing the
battery lifetime and driving range.

C. Our Novel Contributions and Concept Overview

To address the above-mentioned challenges, a novel automotive
climate control methodology for optimizing battery lifetime and
driving range is proposed that employs:

1) Modeling and Estimation of HVAC (Section II-C) which de-
scribes the instantaneous power consumption and thermodynamic
behavior of a HVAC in different states and conditions.

2) Modeling and Estimation of Battery Lifetime (Section II-D)
that measures the battery SoH degradation by predicting the
EV power consumption during a driving period which can be
done by integrating the HVAC, power train, and battery lifetime
degradation models into an EV model.

3) Optimized Battery Lifetime-aware Automotive Climate Con-
trol (Section III) that reduces the HVAC power consumption
when the electrical motor is estimated to consume more. On
the other hand, when the electrical motor power consumption
is estimated to be low, there is enough slack for the HVAC to
adjust the cabin temperature again or precool/preheat the cabin
before the next peak in power consumption arrives. Therefore,
the SoC deviation and the SoC average in a discharging/charging
cycle will decrease and thereby improve the driving range and
the battery lifetime. This controlling methodology is formulated
using Model Predictive Control (MPC). Fig. 2 describes our novel
battery lifetime-aware automotive climate control methodology.
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Fig. 2. Battery Lifetime-aware Automotive Climate Control Methodology.

II. SYSTEM MODELING AND ESTIMATION

As we have stated in Section I, the overall power consumption in
EVs is categorized into three types; the electrical motor, HVAC, and
accessories. The power train inside the EV, in which the electrical
motor is the main component, contributes to driving. Hence, the
electrical motor power consumption is mainly influenced by the
vehicle speed, acceleration, and road slope (see Section II-B). The
HVAC is another significant flexible power consumer inside the
EV. The outside climate, e.g. the ambient temperature and solar
radiation, influence the HVAC power consumption significantly (see
Section II-C). However, the accessories power consumption is fixed
and small compared to other two types.

Characteristics of the components inside an EV are modeled using
Ordinary Differential Equations (ODE) to estimate their behavior and
power consumption in different time instances. Also, the time-varying
factors influencing the consumption, e.g. vehicle speed, acceleration,
road slope, and ambient temperature, are modeled as a multi-variable
input to the above-mentioned models (see Section II-A).

A. Drive Profile

The total EV power consumption is mainly influenced by the sur-
rounding environment. For instance, the HVAC power consumption
is influenced by the ambient temperature and the electrical motor
power consumption is affected by the vehicle speed, acceleration,
and road slope. We define the term drive profile to model these time-
varying factors as a multi-variable input data. A drive profile is a
discrete-time sampled data from the environment, the EV is driving
in. Nowadays, most drivers use GPS navigation systems to select
the most appropriate route to their destinations. Hence, the route
information and the parameters of each route segment such as: road
slope, average vehicle speed, and average vehicle acceleration, are
known accurately before driving. Also, there are existing databases
that provide the information needed for generating real-life drive
profiles. [17] provides the traffic flow information and the average
vehicle speed in each route segment. The elevation at different
coordination in the route is measured to calculate the road slopes
[17]. The ambient temperature at each route segment is extracted from
the existing climate databases [18]. On the other hand, there exists
standard driving cycles, e.g. NEDC, EUDC, etc. [3]. These driving
cycles are mainly used for simulation, verification, and comparison
of the EV efficiency, driving range, and battery lifetime.

B. Power Train Model

The power train in EV is responsible for generating the required

power using the electrical motor and transferring it to the wheels
(see Fig. 3 for an example of a power train in EV, modeled by
AMESim [19]).
In an EV, the main propulsion force - the tractive force (Fi,) - is
provided by the electrical motor to overcome the road load force (F’.q)
to propel the vehicle forward at a desired speed and acceleration [20].
F.q consists of the aerodynamic drag, the gravitational force, and the
rolling resistance:

Frd:Fgr+Faer0+Froll (1)
The aerodynamic drag (Fguero) is the viscous resistance of the air
working against the vehicle motion which is quadratically propor-
tional to the vehicle speed (v). The force is calculated as:

Faero = %pamC’:LA (U + Uwind)2 (2)
where pqr is the air density, C, is the aerodynamic drag coefficient,
A is the effective frontal area of the vehicle, and v,,inq is the head-
wind velocity.

The gravitational force (Fy;) is the force caused by the gravity and
is mainly dependent on the road slope. The force is calculated as:
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Fy, = mgsin arctan % 3)
where m is the total mass of the vehicle, g is the gravitational

acceleration constant, and « is the percentage of the road slope; 100%
represents the slope of 45 .

The rolling resistance (F};;) is produced by the flattening of the tire
at the contacﬁ surface OEthe road and it is calculated as:

Fron =mg co+ Cl’U 4)
where ¢ and c; are the rolling resistance coefficients.

F, is generated by the electrical motor to overcome Fq so that the
vehicle maintains the desired acceleration (a) and speed:

Fi = Frg +ma 5

The electrical motor power consumption (F.) is calculated as:

P, = Firv (6)
Nm

where 7),,, represents the electrical motor efficiency when converting
electrical to mechanical energy in the motor mode and converting
mechanical to electrical energy in the generator mode (regenerative
break). 7, is highly dependent on the motor rotational speed and the
generated torque.

The model parameters are adjusted based on the specifications of
Nissan Leaf [12]. Its driving range and power consumption have been
verified in different conditions by our model.
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Fig. 3.

C. HVAC Model

The HVAC in modern vehicles mainly uses the Variable Air
Volume (VAV) system [10]. The advantage of this system is the
precise control of the temperature and humidity in multi-zone or
single-zone with lower energy consumption [10]. The HVAC structure
[81[9] in an EV is depicted in Fig. 4. The system contains a variable-
speed fan to provide the supply air to the zone(s). A valve damper
is used to control the mix of the outside air and the recirculated air
back into the system. The cooler and the heater will control the air
temperature by exchanging heat. In this paper, we assume a single-
zone HVAC and model the corresponding behavior and dynamics
in different parts of the system using low-order ODEs. Despite the
simplicity (compared to higher-order thermodynamic equations), the
model provides sufficient information for analyzing the transient
behavior of the system. The humidity can be an important factor
affecting the HVAC power consumption, but it is not typically directly
measured or controlled [21]. Therefore, in this paper, the temperature
represents an equivalent dry air temperature at which the dry air has
the same specific enthalpy as the actual moist air mixture.

The temperature inside the cabin (zone) (1%) is influenced by the
supply air to the cabin, the heat exchange with outside, and the solar
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Fig. 4. The Structure of a Single-zone HVAC in an EV.

radiation. The energy balance in the cabin model is described as:
= = Q4 rnacy (T - T2) ™
where M. is the thermal capacitance of the air, wall, and the seats
inside the cabin and ¢, is the heat capacity of the air. The cabin
temperature changing rate (<2) is also controlled by the air flow
rate into the cabin (111,).
The exchanged heat with outside and the solar radiation are modeled
as thermal loads Q
Q = Qsolar + cxAs (To - Tz) (8)
where the solar radiation (Qsolw) and outside temperature (7o)
are time-varying factors. The value of 7, is provided by the drive
profile and Qsola'r is assumed to be constant during driving (thermal
load offset). The heat exchange through the walls with outside is
proportional to the difference between 7, and T,, the heat exchange
coefficient ¢, and the area separating the cabin and outside (Ay).
The air returned from the cabin is mixed with the outside air and
recirculated back to the system. The fraction of the returned air from
the cabin is d,, which is controlled by a damper. Then, the energy
balance in the air mixer gives the temperature of the system inlet air
(Ty,) as follows:
T =01-d)T,+d.T. 9
where T, is the returned air temperature which is as same as the
cabin temperature in a single-zone HVAC.
We consider the cooling and heating coil power consumption in
terms of the energy difference between their inlet and outlet air flow.
Moreover, the heat exchange between the coolant/evaporator and air
is modeled as efficiency parameters:

dt

Ph - Clmz(Ts - T(’) (10)
7]h
P. = ;mz(Tm _Tc) (11)

where P. and P, are cooling coil and heating coil power consump-
tion, respectively. 7, and 7. are the efficiency parameters describing
the operating characteristics of the heating and cooling processes. The
fan power consumption (Py) is quadratically related to 72.:

Pr = ki (1) (12)
where k¢ is a parameter that captures the fan efficiency and the duct
pressure losses.

The parameters for the model have been set based on an HVAC
specifications [8][9] and to match the thermodynamic behavior in
different conditions accurately [15][22].

D. Battery Lifetime Model

Lithium-ion batteries which are widely used as the primary elec-
trical energy storage [23], demonstrate less usable capacity in higher
discharge rates (rate-capacity effect). This characteristic is described
using the Peukert’s Law %3] and battery SoC is calculated as:

t
Lers g (13)

0
= -1
SoC" = SoC 00 x ., Cn
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where C,, is the nominal capacity of the battery measured at
the nominal current (I,,) predefined by the battery manufacturer.
I.;; represents the effective current draining the chemical energy.
pc is the Peukert’s constant which is typically measured empirically
for each type of battery cell. SoC" represents the SoC at time .
Moreover, SoH - the ratio of the current capacity to the nominal
capacity - degrades over time in Lithium-ion battery cells (capacity
fade effect). The SoH degradation (\7SoH) is mainly influenced by
the stress on the battery cell which may be modeled as SoC deviation
(S0Cgev) and the SoC average (SoCavg) [6]. 7 SoH is measured
based on the SoC pattern over a time period:

VSOH = f (SOCdem SOCavg)

_ (aleaSoCdev +a2)(a3eﬁSoCavg) (15)
where «, (3, a1, az, and a3 are the parameters for estimating \7.SoH
accurately based on the battery type. Consideration of the battery
temperature for estimating 7SoH is out of the scope of the paper
and is modeled as a constant in Eq. 15. S0Cge, and SoCqyg are
calculated based on a discharging/charging cycle as:

zr
SoC2,, =% (SoC(t) — S0Cavy)?dt (16)
0
zr
S0Cavg :% SoC(t)dt a7

0

where 1" is the period of the discharging/charging cycle. However,
in this paper, the charging part of the cycle is assumed to have fixed
pattern and duration and the effect of it on SoCg4c, and So0Cqug
are modeled as constants. The battery cell capacity decreases with
the rate of \7SoH. When the battery capacity reaches the 80% of
its nominal capacity, it will be useless [6]. Therefore the number
of discharging/charging cycles, the battery can be used (the battery
lifetime), is dependent on 7 SoH.

III. AUTOMOTIVE CLIMATE CONTROL

The HVAC has multiple state variables that define the current
condition of the system. Control inputs are adjusted by the automotive
climate control to maintain the system output and state variables in a
specific range and target. The evaluation of \7SoH requires estimat-
ing the power consumption of the electrical motor and the HVAC. The
estimation is done by inputting the drive profile (see Section II-A) into
the models of the components (see Section II). A Model Predictive
Control (MPC) [24] may be used for controlling the input variables
of the HVAC. The MPC enables us to look into a receding horizon
(control window) of the discharging cycle (driving cycle) and decide
on the state variables and control inputs for minimizing the cost
function, e.g. minimizing \7SoH. The larger the control window, the
more variables there are to optimize and much more flexibility for
considering the EV (physical plant) variations. In each time step, the
MPC optimizes the state and input variables involved in the control
window and tries to minimize the cost function which is also based
on the state and output variables. The system model equations are
nonlinear and non-convex, therefore the best option might be to apply
Sequential Quadratic Programming (SQP) [21] as the optimization
algorithm for the MPC in each time step.

A. Optimal Control Formulation

Since the control is done in discrete-time, the model equations
also need to be defined in discrete-time. For instance, Eq. 7 and 8
that model the cabin dynamics and solar radiation, are discretized as:

+ _ . +

M =T g e, - T (18)
£t T +T2

Q = Qsolar + Ca:Aac(To - ZTZ) (19)

where T represents the corresponding value at the next time step
t + At. Here, At is a time step duration (sample period).
The input variables to the power train model are v, o, and a (see
Section II-B). Let d* = [v, @, a]® be the value of the input vector to
the power train model at time ¢ and P." be the estimated value of
the electrical motor power consumption.
In the HVAC, let 2" be the value of the state variable T, i*I* be
the value of the controlling input vector [T, T¢, d», mz]o, and 4"t be
the vector of auxiliary variables [Ty, Py, Pe, Ps, Pe, SoC]° at time
t+ k At, predicted at time ¢.
The control requirements and restrictions state the following time-
varying constraints on control inputs and state variables:
Cl: m, <1, < 11, maximum and minimum air flow to the cabin
C2: T, <T. < T. comfort zone restrictions on cabin temperature
C3: T, < Ts heater always increases the temperature
C4: T, < T, cooler always decreases the temperature
C5: T, < T, minimum outlet air temperature by cooler

C6: T < T}, maximum outlet air temperature by heater
C7: 0 < d, < d, limitation on recirculated air fraction
C8: P, < ﬁ heater maximum power output

C9: P. < P. cooler maximum power output

Cl10: P,, < P,, fan maximum power output

also, inside the control window, the predicted value for T at time
t + k At should be equal to 7T, at the next predicted time step
t+(k+1) At. The initial condition for T is described by x¢;, = 7.
The model equations, system dynamics, and constraints can all be
expéeised in télq following form:

th 2 xkjt 3
Gkt ) ikjt )

F%ﬁ e 5K =0 A i E<yr (20)
k+1]t xk+1jt

where Fj is the 4" non-linear equality constraint function for the
optimization problem. The matrices A¥? and b*! define the linear
inequality constraints at time ¢ + k A t.

The discretized cost function for the optimization problem is modeled
through the following quadratic equation:

t%)(\m t
C= w1 (Py + Pe + Py) + w2(SoC — S0Caug)?
T=t
+ w3(Tz - Tta'r‘get)2 (21)

where N is the number of time steps in the control window of
the MPC, wy(Py + P. + P) is for optimizing the HVAC power
consumption with the weight value of wq, w2(SoC — So0Cavg)
optimizes \7SoH by minimizing SoClg., with the weight value of
we, and w3 (Ty — Tiarget)? stabilizes the cabin temperature around
the target temperature (T;qrget) With the weight value of ws. It needs
to be mentioned that the direct equation of <7SoH is not used in
the cost function, since its non-linearity caused the optimizer not to
converge most of the time.
B. MPC Control Algorithm

The algorithm in our automotive climate control methodology cal-

culates the electrical motor power consumption using the input drive
profile, and solves the optimization problem based on Eq. 20 and 21
at each time step, to find the optimum input control values.
Algorithm 1 illustrates a pseudo-code to simulate the driving-time
controlling process of a HVAC inside an EV considering the battery
lifetime for a given drive profile D.



Algorithm 1: Battery Lifetime-aware Automotive Climate Control

Input: Drive profile D
Output: Estimated 5 SoH
T = length (D)
// extract route information for power train
d Dlv;a; (]
for t =712 T do
e = PowerTrain (d?)
// measure electrical motor power consumption

-

(7N VI Y

N = control window duration
x = N [] 1 matrix
i = N [ 4 matrix
u= N [] 6 matrix

// state variable
// control inputs
// auxiliary variables
10 xt = N 0 1 matrix // state variable
1 x9  Tin // initial cabin temperature
// control window optimization variables
12z [xi;u;xt]®
// driving-time HVAC controlling starts
Bfor t=171tTdo

e % 9

14 P. feftokoOt+ Ng

15 To fD[TlFjt 1kt+ Ng

16 Zopt = Optimize (z) // call optimizer
17 // apply control inputs & measure the states

18 [T PsiPe; Pr] = HVAC (Zopt)

19 Pt Pe+ Pp+ Po+ Py

20 SoCt = BMS (P?) // measure next SoC by BMS
21 x0  TF // next time step cabin temperature
2 u®[SoC] SoCt // next time step SoC

23 return 5 SoH = Battery (P)

First, the route information is extracted from the drive profile (line 2)
to measure the electrical motor power consumption, vector e (lines
3-5). The number of the time steps in the control window for MPC is
defined in line 6. The state variables (x, ™), control inputs (3), and
auxiliary variables (u) for the control window are defined (lines 7-
10) and combined in a vector as optimization variables (z) (lines 12).
The cabin temperature, the state variable (x) at the starting time, is
initialized (line 11). In lines 13-22, the driving-time controlling of the
HVAC is in progress. The electrical motor power consumption and
the ambient temperature for the control window which have been
estimated are stored in P. and 75, respectively (lines 14-15). The
optimizer is called to solve the optimization problem stated in Eq.
20 and 21 and returns the optimum solution (line 16). The optimum
solution is applied to the HVAC (physical plant) and the new cabin
temperature and HVAC power consumption are measured (line 18).
The total EV power consumption is calculated and stored at index ¢
of the vector P (line 19). The battery SoC is measured by the BMS
using Eq. 13 (line 20). The cabin temperature and battery SoC at time
t is used as the initial condition for the next time instance (¢t + 1)
(lines 21-22). Finally, \7SoH for the drive profile is calculated by
inputting the vector P to the battery model described in Eq. 15 and
returned (line 23).

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

The model equations defined in Section II contain multiple
parameters which are mostly defined by the real-life specifications
of the system. The values of the parameters are set and adjusted
so that the system dynamics are verified by the experimental data
gathered from the existing references. Our battery lifetime-aware
automotive climate control in Section II and III is implemented
in MATLAB/Simulink [25] and an EV is modeled using AMESim
(commercial system-level automotive design tool) [19] as the physical
plant of the MPC. For evaluation, we use multiple standard driving
cycles as the drive profiles and conduct co-simulation using these two
platforms.

B. Comparison to State-of-the-Art

We compare our battery lifetime-aware automotive climate con-
trol methodology with 1) switching On/Off methodology [8][9] and
2) fuzzy-based methodology [10]. As our methodology is dependent
on the drive profile, for fairness of the comparisons, all methodologies
have been applied for the same system model, drive profile, and
comfort zone.

1) Cabin Temperature Analysis: in each methodology, the controller
sets the variables in the HVAC for optimizing the cost function and
reaching a target. As shown in Fig. 5, the controllers manage the cabin
temperature during driving-time differently. For instance, as shown in
Fig. 5, the cabin temperature fluctuates the maximum when using the
switching On/Off methodology, while the fuzzy-based methodology
stabilizes the temperature as far as possible.

= Our Battery Lifetime-aware Fuzzy-based([10] On/ Off [8,19]
o 247 27

= 246 26 g
5 245 25 5
o 244 ®
g 24 @
g 24.3 g.
& 242 B 3
£ 241 2 c
8 24 21 §

0 100 200 300 400 500 600 700 800 900 1000

Timel(s)
Fig. 5. Cabin Temperature Analysis for Different Controllers [right Y-axis is
for On/Off methodology and left Y-axis is for our battery lifetime-aware and
fuzzy-based methodologies].

On the other hand, as shown in Fig. 6, our methodology demonstrates
different temperature management; it reduces the HVAC consumption
when the electrical motor is consuming high power and it would
precool the cabin (in this case outside is warmer) before the electrical
motor consumption gets higher. In this way, the electrical motor
consumption would be complemented by the HVAC consumption.
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Fig. 6. Tllustrating the Precool Process using Our Algorithm.

2) Battery Lifetime Analysis: SoH degradation may vary based
on the methodologies. We have set the same ambient temperature,
comfort zone, and target temperature for all the methodologies. Then,
we have compared the \7SoH and listed their ratios with respect to
the first controller (switching On/Off) in Fig. 7. As shown in the
figure, the \7SoH has been improved the most in ECE_EUDC drive
profile. The improvement (on average 14%) in our methodology is
due to the controller that is trying to minimize the SoC deviation by
adjusting the HVAC power consumption (as shown in Fig. 6).

100 ®On/Off([8,9] = Fuzzy-based[10] m OurBatteryLifetime-aware
T
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Fig. 7. Battery Lifetime Comparison for Different Drive Profiles.



3) HVAC Power Consumption Analysis: the average HVAC power
consumption may vary by the methodology used and its variables.
We have set the same ambient temperature, comfort zone, and target
temperature for all the methodologies. Then, we have been able to
compare the average HVAC power consumption and illustrate it in
Fig. 8. As shown in the figure, our methodology minimizes the power
consumption as far as possible (on average 39%). Although this im-
provement is marginal compared to the fuzzy-based methodology (on
average 6%), our methodology has improved \7.SoH by minimizing
the SoC deviation (see Fig. 7).

= Fuzzy-based([110]

& On/ Off [8, 9]

m Our Battery Lifetime-aware
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Fig. 8. HVAC Power Consumption Analysis for Different Drive Profiles.

4) Ambient Temperature Analysis: the controllers for different
methodologies must maintain the cabin temperature in the comfort
zone regardless of the outside temperature. However, they show
different efficiency and \7SoH in different conditions. We compare
the \7SoH and HVAC power consumption in different ambient
temperatures. In this comparison, ECE_EUDC drive profile has been
used and the results for the HVAC power consumption and v7.SoH
improvement compared to the respective methodology, are listed in
Table I. Results show that in the conditions when the HVAC power
consumption is more considerable, our methodology demonstrates
more improvement in \7SoH (as high as 36%).

TABLE 1. ANALYSIS OF HVAC POWER CONSUMPTION AND SOH
DEGRADATION FOR DIFFERENT AMBIENT TEMPERATURES.

. AverageHVACPowelConsumption(KW) | SoHDegradationimprovement (%)
TeAmrgzer?fl‘r; On/ Off(TFuzzy-based( | OurBatteryl | On/ OFf(IIIT Fuzzy-based |
[8,9] [10] Lifetime-aware [8,9] [10]

43T 5.44 3.51 3.59 19.57 1.18
35T 3.20 2.11 1.97 16.24 6.08
32T 212 1.59 1.40 14.92 7.54
21T 0.90 0.58 0.29 12.33 9.36
10T 4.71 1.85 1.68 32.83 4.89
0T 6.08 512 2.84 31.82 36.48

V. CONCLUSIONS

Based on our experiments, we have noticed that inside an EV, the
HVAC consumes the most power after the electrical motor. However,
its consumption is flexible and controllable by adjusting the HVAC
variables. Therefore, we have presented a novel battery lifetime-aware
automotive climate control methodology which is based on the co-
ordination between the HVAC and BMS. The methodology employs
a controller based on MPC to estimate and optimize the battery
lifetime. The controller reduces the HVAC power consumption when
the electrical motor is consuming significantly. When the electrical
motor is consuming less or generating, the HVAC may consume more
in order to maintain the temperature and precool/preheat the cabin.
This methodology may reduce the stress on the battery and improve
the battery lifetime and driving range. Our methodology demonstrates
significant improvement in battery lifetime (on average 14%) and
average power consumption (on average 39% reduction) compared to
the state-of-the-art methodologies. The battery lifetime improvement
may vary based on drive profiles and ambient temperature. In the
conditions when the HVAC power consumption is more considerable,
v SoH improvement is more significant (as high as 36%).
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